Skip to contents

Multidimensional sensitivity analysis for different sources of bias, where the bias analysis is repeated within a range of values for the bias parameter(s).

Usage

multidimBias(
  case,
  exposed,
  type = c("exposure", "outcome", "confounder", "selection"),
  se = NULL,
  sp = NULL,
  bias_parms = NULL,
  OR.sel = NULL,
  OR_sel = NULL,
  alpha = 0.05,
  dec = 4,
  print = TRUE
)

Arguments

case

Outcome variable. If a variable, this variable is tabulated against.

exposed

Exposure variable.

type

Implement analysis for exposure misclassification, outcome misclassification, unmeasured confounder, or selection bias.

se

Numeric vector of sensitivities. Parameter used with exposure or outcome misclassification.

sp

Numeric vector of specificities. Parameter used with exposure or outcome misclassification. Should be the same length as `se`.

bias_parms

List of bias parameters used with unmeasured confounder. The list is made of 3 vectors of the same length:

  1. Prevalence of Confounder in Exposure+ population,

  2. Prevalence of Confounder in Exposure- population, and

  3. Relative risk between Confounder and Outcome.

OR.sel

Deprecated; please use OR_sel instead.

OR_sel

Selection odds ratios, for selection bias implementation.

alpha

Significance level.

dec

Number of decimals in the printout.

print

A logical scalar. Should the results be printed?

Value

A list with elements:

obs.data

The analyzed 2 x 2 table from the observed data.

obs.measures

A table of odds ratios and relative risk with confidence intervals.

adj.measures

Multidimensional corrected relative risk and/or odds ratio data.

bias.parms

Bias parameters.

Examples

multidimBias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "exposure",
se = c(1, 1, 1, .9, .9, .9, .8, .8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
#> Multidimensional Exposure Misclassification
#>  Observed Data: 
#> --------------------------------------------------- 
#> Outcome   : HIV+ 
#> Comparing : Circ+ vs. Circ- 
#> 
#>      Circ+ Circ-
#> HIV+    45    94
#> HIV-   257   945
#> 
#>                                95% conf. interval
#> Observed Relative Risk: 1.6470    1.1824   2.2941
#>    Observed Odds Ratio: 1.7603    1.2025   2.5769
#> 
#> Multidimensional Corrected Relative Risk Data: 
#> ---------------------------------------------- 
#>            Outcome + --> 
#> Outcome - | 
#>           V
#>                 Se: 1 Sp: 1 Se: 1 Sp: 0.9 Se: 1 Sp: 0.8 Se: 0.9 Sp: 1
#> Se: 1 Sp: 1        1.646999     1.1908873     0.6980786      1.892179
#> Se: 1 Sp: 0.9      2.779998     2.0473750     1.2312833      3.167761
#> Se: 1 Sp: 0.8      9.285050     7.6913317     5.6247010     10.086553
#> Se: 0.9 Sp: 1      1.463365     1.0551404     0.6161420      1.683347
#> Se: 0.9 Sp: 0.9    2.493351     1.8275497     1.0916938      2.847120
#> Se: 0.9 Sp: 0.8    8.863847     7.2832297     5.2439447      9.658349
#> Se: 0.8 Sp: 1      1.274090     0.9160976     0.5329205      1.467484
#> Se: 0.8 Sp: 0.9    2.191376     1.5982876     0.9481515      2.507815
#> Se: 0.8 Sp: 0.8    8.355700     6.7995802     4.8076884      9.138255
#>                 Se: 0.9 Sp: 0.9 Se: 0.9 Sp: 0.8 Se: 0.8 Sp: 1 Se: 0.8 Sp: 0.9
#> Se: 1 Sp: 1            1.371475       0.8079398      2.230237        1.620214
#> Se: 1 Sp: 0.9          2.339504       1.4160818      3.697461        2.737415
#> Se: 1 Sp: 0.8          8.344028       6.1388867     11.158630        9.195756
#> Se: 0.9 Sp: 1          1.216587       0.7137754      1.987126        1.439353
#> Se: 0.9 Sp: 0.9        2.092559       1.2576463      3.331489        2.454552
#> Se: 0.9 Sp: 0.8        7.930458       5.7488347     10.719779        8.775295
#> Se: 0.8 Sp: 1          1.057519       0.6179382      1.734959        1.252999
#> Se: 0.8 Sp: 0.9        1.833908       1.0941550      2.942147        2.156718
#> Se: 0.8 Sp: 0.8        7.436350       5.2976259     10.182874        8.268464
#>                 Se: 0.8 Sp: 0.8
#> Se: 1 Sp: 1           0.9598438
#> Se: 1 Sp: 0.9         1.6686882
#> Se: 1 Sp: 0.8         6.7907766
#> Se: 0.9 Sp: 1         0.8490046
#> Se: 0.9 Sp: 0.9       1.4851742
#> Se: 0.9 Sp: 0.8       6.3917770
#> Se: 0.8 Sp: 1         0.7358953
#> Se: 0.8 Sp: 0.9       1.2949529
#> Se: 0.8 Sp: 0.8       5.9250970
#> 
#> Multidimensional Corrected Odds Ratio Data: 
#> ------------------------------------------- 
#>           Cases --> 
#> Controls | 
#>          V
#>                 Se: 1 Sp: 1 Se: 1 Sp: 0.9 Se: 1 Sp: 0.8 Se: 0.9 Sp: 1
#> Se: 1 Sp: 1        1.760286     1.2165535     0.6728206      2.065754
#> Se: 1 Sp: 0.9      3.306971     2.2854843     1.2639978      3.880840
#> Se: 1 Sp: 0.8     27.252628    18.8345937    10.4165599     31.981860
#> Se: 0.9 Sp: 1      1.536385     1.0618131     0.5872407      1.802999
#> Se: 0.9 Sp: 0.9    2.886338     1.9947804     1.1032226      3.387213
#> Se: 0.9 Sp: 0.8   23.786209    16.4389131     9.0916175     27.913903
#> Se: 0.8 Sp: 1      1.312484     0.9070726     0.5016607      1.540244
#> Se: 0.8 Sp: 0.9    2.465705     1.7040765     0.9424474      2.893587
#> Se: 0.8 Sp: 0.8   20.319790    14.0432325     7.7666752     23.845946
#>                 Se: 0.9 Sp: 0.9 Se: 0.9 Sp: 0.8 Se: 0.8 Sp: 1 Se: 0.8 Sp: 0.9
#> Se: 1 Sp: 1            1.427666       0.7895772      2.499500        1.727432
#> Se: 1 Sp: 0.9          2.682091       1.4833432      4.695699        3.245250
#> Se: 1 Sp: 0.8         22.103019      12.2241776     38.697084       26.743985
#> Se: 0.9 Sp: 1          1.246073       0.6891463      2.181575        1.507710
#> Se: 0.9 Sp: 0.9        2.340941       1.2946682      4.098426        2.832468
#> Se: 0.9 Sp: 0.8       19.291608      10.6693140     33.774979       23.342263
#> Se: 0.8 Sp: 1          1.064480       0.5887155      1.863649        1.287988
#> Se: 0.8 Sp: 0.9        1.999790       1.1059932      3.501153        2.419686
#> Se: 0.8 Sp: 0.8       16.480198       9.1144503     28.852874       19.940542
#>                 Se: 0.8 Sp: 0.8
#> Se: 1 Sp: 1           0.9553646
#> Se: 1 Sp: 0.9         1.7948004
#> Se: 1 Sp: 0.8        14.7908856
#> Se: 0.9 Sp: 1         0.8338463
#> Se: 0.9 Sp: 0.9       1.5665094
#> Se: 0.9 Sp: 0.8      12.9095476
#> Se: 0.8 Sp: 1         0.7123279
#> Se: 0.8 Sp: 0.9       1.3382184
#> Se: 0.8 Sp: 0.8      11.0282095
#> 
#>                [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
#> Sensitivities:    1  1.0  1.0  0.9  0.9  0.9  0.8  0.8  0.8
#> Specificities:    1  0.9  0.8  1.0  0.9  0.8  1.0  0.9  0.8
multidimBias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "outcome",
se = c(1, 1, 1, .9, .9, .9, .8, .8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
#> Multidimensional Outcome Misclassification
#>  
#> Observed Data: 
#> --------------------------------------------------- 
#> Outcome   : HIV+ 
#> Comparing : Circ+ vs. Circ- 
#> 
#>      Circ+ Circ-
#> HIV+    45    94
#> HIV-   257   945
#> 
#>                                95% conf. interval
#> Observed Relative Risk: 1.6470    1.1824   2.2941
#>    Observed Odds Ratio: 1.7603    1.2025   2.5769
#> 
#> Multidimensional Corrected Relative Risk Data: 
#> ---------------------------------------------- 
#>            Outcome + --> 
#> Outcome - | 
#>           V
#>                 Se: 1 Sp: 1 Se: 1 Sp: 0.9 Se: 1 Sp: 0.8 Se: 0.9 Sp: 1
#> Se: 1 Sp: 1       1.6469987     0.6018662    -0.7045495     1.8299986
#> Se: 1 Sp: 0.9   -14.0743528    -5.1432203     6.0206954   -15.6381698
#> Se: 1 Sp: 0.8    -1.0883507    -0.3977183     0.4655722    -1.2092785
#> Se: 0.9 Sp: 1     1.4822989     0.5416796    -0.6340945     1.6469987
#> Se: 0.9 Sp: 0.9 -12.5105358    -4.5717514     5.3517292   -13.9005954
#> Se: 0.9 Sp: 0.8  -0.9523068    -0.3480035     0.4073757    -1.0581187
#> Se: 0.8 Sp: 1     1.3175990     0.4814930    -0.5636396     1.4639989
#> Se: 0.8 Sp: 0.9 -10.9467188    -4.0002824     4.6827631   -12.1630209
#> Se: 0.8 Sp: 0.8  -0.8162630    -0.2982887     0.3491792    -0.9069589
#>                 Se: 0.9 Sp: 0.9 Se: 0.9 Sp: 0.8 Se: 0.8 Sp: 1 Se: 0.8 Sp: 0.9
#> Se: 1 Sp: 1           0.6770995      -0.8051994      2.058748       0.7738280
#> Se: 1 Sp: 0.9        -5.7861228       6.8807947    -17.592941      -6.6127118
#> Se: 1 Sp: 0.8        -0.4474330       0.5320825     -1.360438      -0.5113521
#> Se: 0.9 Sp: 1         0.6093895      -0.7246794      1.852874       0.6964452
#> Se: 0.9 Sp: 0.9      -5.1432203       6.1162620    -15.638170      -5.8779660
#> Se: 0.9 Sp: 0.8      -0.3915039       0.4655722     -1.190384      -0.4474330
#> Se: 0.8 Sp: 1         0.5416796      -0.6441595      1.646999       0.6190624
#> Se: 0.8 Sp: 0.9      -4.5003177       5.3517292    -13.683399      -5.1432203
#> Se: 0.8 Sp: 0.8      -0.3355748       0.3990619     -1.020329      -0.3835140
#>                 Se: 0.8 Sp: 0.8
#> Se: 1 Sp: 1          -0.9393993
#> Se: 1 Sp: 0.9         8.0275938
#> Se: 1 Sp: 0.8         0.6207630
#> Se: 0.9 Sp: 1        -0.8454593
#> Se: 0.9 Sp: 0.9       7.1356390
#> Se: 0.9 Sp: 0.8       0.5431676
#> Se: 0.8 Sp: 1        -0.7515194
#> Se: 0.8 Sp: 0.9       6.2436841
#> Se: 0.8 Sp: 0.8       0.4655722
#> 
#> Multidimensional Corrected Odds Ratio Data: 
#> ------------------------------------------- 
#>           Cases --> 
#> Controls | 
#>          V
#>                 Se: 1 Sp: 1 Se: 1 Sp: 0.9 Se: 1 Sp: 0.8 Se: 0.9 Sp: 1
#> Se: 1 Sp: 1        1.760286     0.5789387    -0.6024091      1.994681
#> Se: 1 Sp: 0.9    -16.713831    -5.4969933     5.7198444    -18.939394
#> Se: 1 Sp: 0.8     -1.454015    -0.4782094     0.4975963     -1.647627
#> Se: 0.9 Sp: 1      1.566748     0.5152860    -0.5361760      1.775371
#> Se: 0.9 Sp: 0.9  -14.876194    -4.8926149     5.0909641    -16.857063
#> Se: 0.9 Sp: 0.8   -1.294150    -0.4256317     0.4428870     -1.466476
#> Se: 0.8 Sp: 1      1.373210     0.4516334    -0.4699429      1.556062
#> Se: 0.8 Sp: 0.9  -13.038557    -4.2882365     4.4620839    -14.774731
#> Se: 0.8 Sp: 0.8   -1.134286    -0.3730540     0.3881778     -1.285324
#>                 Se: 0.9 Sp: 0.9 Se: 0.9 Sp: 0.8 Se: 0.8 Sp: 1 Se: 0.8 Sp: 0.9
#> Se: 1 Sp: 1           0.6560284      -0.6826241      2.301087       0.7568018
#> Se: 1 Sp: 0.9        -6.2289562       6.4814815    -21.848701      -7.1857949
#> Se: 1 Sp: 0.8        -0.5418864       0.5638547     -1.900722      -0.6251263
#> Se: 0.9 Sp: 1         0.5839000      -0.6075716      2.048089       0.6735936
#> Se: 0.9 Sp: 0.9      -5.5441006       5.7688615    -19.446500      -6.3957376
#> Se: 0.9 Sp: 0.8      -0.4823075       0.5018605     -1.691743      -0.5563955
#> Se: 0.8 Sp: 1         0.5117715      -0.5325190      1.795091       0.5903855
#> Se: 0.8 Sp: 0.9      -4.8592450       5.0562414    -17.044299      -5.6056804
#> Se: 0.8 Sp: 0.8      -0.4227287       0.4398663     -1.482764      -0.4876646
#>                 Se: 0.8 Sp: 0.8
#> Se: 1 Sp: 1          -0.7874830
#> Se: 1 Sp: 0.9         7.4771109
#> Se: 1 Sp: 0.8         0.6504692
#> Se: 0.9 Sp: 1        -0.7009015
#> Se: 0.9 Sp: 0.9       6.6550243
#> Se: 0.9 Sp: 0.8       0.5789520
#> Se: 0.8 Sp: 1        -0.6143200
#> Se: 0.8 Sp: 0.9       5.8329377
#> Se: 0.8 Sp: 0.8       0.5074348
#> 
#>                [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
#> Sensitivities:    1  1.0  1.0  0.9  0.9  0.9  0.8  0.8  0.8
#> Specificities:    1  0.9  0.8  1.0  0.9  0.8  1.0  0.9  0.8
multidimBias(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "confounder",
bias_parms = list(seq(.72, .92, by = .02),
seq(.01, .11, by = .01), seq(.13, 1.13, by = .1)))
#> Multidimensional Unmeasured Confounding
#>  Observed Data: 
#> --------------------------------------------------- 
#> Outcome   : HIV+ 
#> Comparing : Circ+ vs. Circ- 
#> 
#>      Circ+ Circ-
#> HIV+   105    85
#> HIV-   527    93
#> 
#>                                95% conf. interval
#> Observed Relative Risk: 0.3479    0.2757   0.4390
#>    Observed Odds Ratio: 0.2180    0.1519   0.3128
#> 
#> Multidimensional Relative Risk Exposure-Data Relationship Adjusted for Confounder: 
#> ---------------------------------------------- 
#>                                         RR(Conf-Outc): 0.13 RR(Conf-Outc): 0.23
#> p(Conf+|Exp+): 0.72 p(Conf+|Exp-): 0.01           0.9231484           0.7747670
#> p(Conf+|Exp+): 0.74 p(Conf+|Exp-): 0.02           0.9597456           0.7962743
#> p(Conf+|Exp+): 0.76 p(Conf+|Exp-): 0.03           1.0001019           0.8193787
#> p(Conf+|Exp+): 0.78 p(Conf+|Exp-): 0.04           1.0448278           0.8442647
#> p(Conf+|Exp+): 0.8 p(Conf+|Exp-): 0.05            1.0946737           0.8711468
#> p(Conf+|Exp+): 0.82 p(Conf+|Exp-): 0.06           1.1505720           0.9002752
#> p(Conf+|Exp+): 0.84 p(Conf+|Exp-): 0.07           1.2136965           0.9319436
#> p(Conf+|Exp+): 0.86 p(Conf+|Exp-): 0.08           1.2855450           0.9664995
#> p(Conf+|Exp+): 0.88 p(Conf+|Exp-): 0.09           1.3680604           1.0043567
#> p(Conf+|Exp+): 0.9 p(Conf+|Exp-): 0.1             1.4638088           1.0460119
#> p(Conf+|Exp+): 0.92 p(Conf+|Exp-): 0.11           1.5762507           1.0920669
#>                                         RR(Conf-Outc): 0.33 RR(Conf-Outc): 0.43
#> p(Conf+|Exp+): 0.72 p(Conf+|Exp-): 0.01           0.6676663           0.5867232
#> p(Conf+|Exp+): 0.74 p(Conf+|Exp-): 0.02           0.6807875           0.5948614
#> p(Conf+|Exp+): 0.76 p(Conf+|Exp-): 0.03           0.6946251           0.6033270
#> p(Conf+|Exp+): 0.78 p(Conf+|Exp-): 0.04           0.7092396           0.6121402
#> p(Conf+|Exp+): 0.8 p(Conf+|Exp-): 0.05            0.7246982           0.6213227
#> p(Conf+|Exp+): 0.82 p(Conf+|Exp-): 0.06           0.7410762           0.6308983
#> p(Conf+|Exp+): 0.84 p(Conf+|Exp-): 0.07           0.7584581           0.6408928
#> p(Conf+|Exp+): 0.86 p(Conf+|Exp-): 0.08           0.7769393           0.6513342
#> p(Conf+|Exp+): 0.88 p(Conf+|Exp-): 0.09           0.7966273           0.6622534
#> p(Conf+|Exp+): 0.9 p(Conf+|Exp-): 0.1             0.8176443           0.6736837
#> p(Conf+|Exp+): 0.92 p(Conf+|Exp-): 0.11           0.8401297           0.6856620
#>                                         RR(Conf-Outc): 0.53 RR(Conf-Outc): 0.63
#> p(Conf+|Exp+): 0.72 p(Conf+|Exp-): 0.01           0.5233977           0.4725025
#> p(Conf+|Exp+): 0.74 p(Conf+|Exp-): 0.02           0.5284341           0.4755447
#> p(Conf+|Exp+): 0.76 p(Conf+|Exp-): 0.03           0.5336178           0.4786495
#> p(Conf+|Exp+): 0.78 p(Conf+|Exp-): 0.04           0.5389553           0.4818189
#> p(Conf+|Exp+): 0.8 p(Conf+|Exp-): 0.05            0.5444537           0.4850550
#> p(Conf+|Exp+): 0.82 p(Conf+|Exp-): 0.06           0.5501203           0.4883597
#> p(Conf+|Exp+): 0.84 p(Conf+|Exp-): 0.07           0.5559628           0.4917355
#> p(Conf+|Exp+): 0.86 p(Conf+|Exp-): 0.08           0.5619898           0.4951846
#> p(Conf+|Exp+): 0.88 p(Conf+|Exp-): 0.09           0.5682099           0.4987093
#> p(Conf+|Exp+): 0.9 p(Conf+|Exp-): 0.1             0.5746328           0.5023122
#> p(Conf+|Exp+): 0.92 p(Conf+|Exp-): 0.11           0.5812683           0.5059960
#>                                         RR(Conf-Outc): 0.73 RR(Conf-Outc): 0.83
#> p(Conf+|Exp+): 0.72 p(Conf+|Exp-): 0.01           0.4307047           0.3957653
#> p(Conf+|Exp+): 0.74 p(Conf+|Exp-): 0.02           0.4324374           0.3966280
#> p(Conf+|Exp+): 0.76 p(Conf+|Exp-): 0.03           0.4341935           0.3974974
#> p(Conf+|Exp+): 0.78 p(Conf+|Exp-): 0.04           0.4359737           0.3983736
#> p(Conf+|Exp+): 0.8 p(Conf+|Exp-): 0.05            0.4377784           0.3992568
#> p(Conf+|Exp+): 0.82 p(Conf+|Exp-): 0.06           0.4396081           0.4001469
#> p(Conf+|Exp+): 0.84 p(Conf+|Exp-): 0.07           0.4414634           0.4010440
#> p(Conf+|Exp+): 0.86 p(Conf+|Exp-): 0.08           0.4433448           0.4019483
#> p(Conf+|Exp+): 0.88 p(Conf+|Exp-): 0.09           0.4452529           0.4028598
#> p(Conf+|Exp+): 0.9 p(Conf+|Exp-): 0.1             0.4471881           0.4037787
#> p(Conf+|Exp+): 0.92 p(Conf+|Exp-): 0.11           0.4491512           0.4047050
#>                                         RR(Conf-Outc): 0.93 RR(Conf-Outc): 1.03
#> p(Conf+|Exp+): 0.72 p(Conf+|Exp-): 0.01           0.3661242           0.3406612
#> p(Conf+|Exp+): 0.74 p(Conf+|Exp-): 0.02           0.3664080           0.3405634
#> p(Conf+|Exp+): 0.76 p(Conf+|Exp-): 0.03           0.3666925           0.3404656
#> p(Conf+|Exp+): 0.78 p(Conf+|Exp-): 0.04           0.3669779           0.3403680
#> p(Conf+|Exp+): 0.8 p(Conf+|Exp-): 0.05            0.3672642           0.3402705
#> p(Conf+|Exp+): 0.82 p(Conf+|Exp-): 0.06           0.3675513           0.3401731
#> p(Conf+|Exp+): 0.84 p(Conf+|Exp-): 0.07           0.3678393           0.3400758
#> p(Conf+|Exp+): 0.86 p(Conf+|Exp-): 0.08           0.3681281           0.3399787
#> p(Conf+|Exp+): 0.88 p(Conf+|Exp-): 0.09           0.3684178           0.3398816
#> p(Conf+|Exp+): 0.9 p(Conf+|Exp-): 0.1             0.3687083           0.3397847
#> p(Conf+|Exp+): 0.92 p(Conf+|Exp-): 0.11           0.3689998           0.3396879
#>                                         RR(Conf-Outc): 1.13
#> p(Conf+|Exp+): 0.72 p(Conf+|Exp-): 0.01           0.3185510
#> p(Conf+|Exp+): 0.74 p(Conf+|Exp-): 0.02           0.3182081
#> p(Conf+|Exp+): 0.76 p(Conf+|Exp-): 0.03           0.3178667
#> p(Conf+|Exp+): 0.78 p(Conf+|Exp-): 0.04           0.3175270
#> p(Conf+|Exp+): 0.8 p(Conf+|Exp-): 0.05            0.3171889
#> p(Conf+|Exp+): 0.82 p(Conf+|Exp-): 0.06           0.3168524
#> p(Conf+|Exp+): 0.84 p(Conf+|Exp-): 0.07           0.3165174
#> p(Conf+|Exp+): 0.86 p(Conf+|Exp-): 0.08           0.3161841
#> p(Conf+|Exp+): 0.88 p(Conf+|Exp-): 0.09           0.3158522
#> p(Conf+|Exp+): 0.9 p(Conf+|Exp-): 0.1             0.3155219
#> p(Conf+|Exp+): 0.92 p(Conf+|Exp-): 0.11           0.3151932
#> 
#>                           [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> p(Confounder+|Exposure+): 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88  0.90
#> p(Confounder+|Exposure-): 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09  0.10
#> RR(Confounder-Outcome)    0.13 0.23 0.33 0.43 0.53 0.63 0.73 0.83 0.93  1.03
#>                           [,11]
#> p(Confounder+|Exposure+):  0.92
#> p(Confounder+|Exposure-):  0.11
#> RR(Confounder-Outcome)     1.13
multidimBias(matrix(c(136, 107, 297, 165),
dimnames = list(c("Uveal Melanoma+", "Uveal Melanoma-"),
c("Mobile Use+", "Mobile Use -")),
nrow = 2, byrow = TRUE),
type = "selection",
OR_sel = seq(1.5, 6.5, by = .5))
#> Multidimensional Selection Bias
#>  Observed Data: 
#> --------------------------------------------------- 
#> Outcome   : Uveal Melanoma+ 
#> Comparing : Mobile Use+ vs. Mobile Use - 
#> 
#>                 Mobile Use+ Mobile Use -
#> Uveal Melanoma+         136          107
#> Uveal Melanoma-         297          165
#> 
#>                                95% conf. interval
#> Observed Relative Risk: 0.7984    0.6518   0.9780
#>    Observed Odds Ratio: 0.7061    0.5144   0.9693
#> 
#> Observed and Selection Bias Corrected Measures: 
#> -----------------------------------------------
#>       OR selection: OR corrected:
#>  [1,]           1.5     0.4707511
#>  [2,]           2.0     0.3530633
#>  [3,]           2.5     0.2824507
#>  [4,]           3.0     0.2353756
#>  [5,]           3.5     0.2017505
#>  [6,]           4.0     0.1765317
#>  [7,]           4.5     0.1569170
#>  [8,]           5.0     0.1412253
#>  [9,]           5.5     0.1283867
#> [10,]           6.0     0.1176878
#> [11,]           6.5     0.1086349
#>